This HTML5 document contains 12 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dcthttp://purl.org/dc/terms/
n2http://taxref.mnhn.fr/lod/bib/
foafhttp://xmlns.com/foaf/0.1/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
taxrefhttp://taxref.mnhn.fr/lod/
bibohttp://purl.org/ontology/bibo/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n6https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114295/pdf/fcimb-04-00103.
xsdhhttp://www.w3.org/2001/XMLSchema#
Subject Item
n2:332036
rdf:type
schema:CreativeWork bibo:Document
rdfs:label
Michelet <i>et al.</i> (2014)
rdfs:isDefinedBy
taxref:taxref-ld
schema:datePublished
2014-01-01
dct:title
Michelet <i>et al.</i> (2014)
foaf:page
n6:pdf
dct:abstract
Due to increased travel, climatic, and environmental changes, the incidence of tick-borne disease in both humans and animals is increasing throughout Europe. Therefore, extended surveillance tools are desirable. To accurately screen tick-borne pathogens (TBPs), a large scale epidemiological study was conducted on 7050 lxodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia venatorum), unexpected (Borrelia miyamotoi), and rare (Bartonella henselae) pathogens in the three European countries. Moreover we detected Borrelia spielmanii, Borrelia miyamotoi, Babesia divergens, and Babesia venatorum for the first time in Danish ticks. This surveillance method represents a major improvement in epidemiological studies, able to facilitate comprehensive testing of TBPs, and which can also be customized to monitor emerging diseases.
bibo:abstract
Due to increased travel, climatic, and environmental changes, the incidence of tick-borne disease in both humans and animals is increasing throughout Europe. Therefore, extended surveillance tools are desirable. To accurately screen tick-borne pathogens (TBPs), a large scale epidemiological study was conducted on 7050 lxodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia venatorum), unexpected (Borrelia miyamotoi), and rare (Bartonella henselae) pathogens in the three European countries. Moreover we detected Borrelia spielmanii, Borrelia miyamotoi, Babesia divergens, and Babesia venatorum for the first time in Danish ticks. This surveillance method represents a major improvement in epidemiological studies, able to facilitate comprehensive testing of TBPs, and which can also be customized to monitor emerging diseases.
dct:issued
2014-01-01
dct:bibliographicCitation
Michelet, L., Delannoy, S., Devillers, E., Umhang, G., Aspan, A., Juremalm, M., Chirico, J., van der Wal, F., Sprong, H., Pihl, T., Klitgaard, K., Bodker, R., Fach, P. &amp; Moutailler, S. 2014. High-throughput screening of tick-borne pathogens in Europe. <em>Frontiers in Cellular and Infection Microbiology.</em>, 4: 103.
schema:sameAs
n6:pdf